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The hetero-Diels Alder reactions of carbonyl compounds with

conjugated dienes is an important methodology for the synthesis

of dihydropyrans. Accelerated by Lewis acids, these reactions
have been a veritable training ground for evaluation of the

effectiveness of chiral catalysts as Lewis acids for enantioselective

transformationg:8 Although selectivities of 99% ee have been

achieved in select cases, a major drawback of this methodology
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formation of dihydropyrarl, whereas treatment with 5% J&/
MeOH gave acetal that we used to monitor the syn/anti
diasteromer ratio which, by reason of oxonium ion formation, is
an indicator of the Lewis acidity of the catalyst (high activity
isomerization).

A comparison of results from the use of a broad selection of
chiral dirhodium(ll) catalysts is presented in Table 1. Both chiral
carboxamidate-ligate®(6) and carboxylate-ligated’) dirhod-
ium complexes were employed. Dirhodium(ll) complexes with
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has been its high catalyst loading [substrate/catalyst (S/C) usually

<50]. We have previously developed chiral dirhodium(ll) car-

boxamidate catalysts for effective and efficient metal carbene

transformationg;** and we now report a major extension of their
applications to hetero-DietsAlder reactions where their opera-
tions allow substrate-to-catalyst loadings of up to 10,000.

To ascertain the viability of the approach with dirhodium(ll)
catalysts, we first employed rhodium acetate at 1.0 mol % for
the cycloaddition of Danishefsky’'s diene with an equivalent
amount of p-nitrobenzaldehyde (eq 1), and this reaction was
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complete within 6 h atroom temperature in Ci€l,. Treatment
of the reaction solution with trifluoroacetic acid resulted in the
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the new fluorinated MEPY3b) and IBAZ (5a) or CHAZ (5b)
ligands? were expected to provide enhanced Lewis acid activity
to dirhodium(ll) even beyond that from representative azetidinone
ligands® or from chiral carboxylate¥.However, the highest level

of enantiocontrol was achieved with the less Lewis acidig-Rh
(4SMPPIM),, which in metal carbene reactions was considered
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Table 1. Enantioselectivity in Catalytic Cycloaddition of Table 2. Hetero-Diels-Alder Reactions of Representative
p-Nitrobenzaldehyde to Danishefsky's Diéne Aldehydes with the Danishefsky Diehe
catalyst yield, %1 (synanti2)  ee, %1 (config.) yield, %  ee, %
Rhy(OAC) 67 (100:0) — R catalyst 1 I
RRGRMEPY: 30000 8 N0, RMGRAFIBAD, 6 70
Rhy(4SMEAZ) 4 63 (95;5) 56 §) (b) p-CIC¢H, Rhy(4R-dFIBAZ), 86; 65
Rh(4SI1BAZ) 4 62 (100:0) 66 9 (c) CeHs Rhy(4R-dFIBAZ), 50 65
Rh(4R-dFIBAZ), 68 (60:40) 70R) (d) p-MeOC4H, Rhy(4R-dFIBAZ), 27 18
Rh,(4R-dFIBAZ), oF 2R (¢) rans-p-NO,CsHCH=CH Rhy(4R-dFIBAZ), 33 68
Rh(4S-CHAZ), 54 (100:0) 619 Rhy(4S-MPPIM), 41 %9
Rh(4R-dFCHAZ), 98! 76 R
Rh(4SMACIM) 4 76 749 (f) EtOOC Rhy(4R-dFIBAZ)4 43d 54
Rh(4S-MPPIM)4 8 95 (9 Rh,(45-MPPIM), 83 10
Rhy(SDOSP), 68 200 (® /@\ Rh,(4R-GFIBAZ),  78° 80
Rh(STBSP), 61 169 ON { Rh,(4S-MPPIM), a8’ 93
aUnless indicated otherwise, reactions were performed at room () /@\ Rhy(4R-dFIBAZ), 98'1 85
temperature in anhydrous GEl, using equivalent amounts of reactants ON" g { Rh,(4S-MPPIM), 81 94

and 1.0 mol % of catalyst with a reaction time of 2#ltsolated yield N - - - -
after column chromatography. Tteynanti ratio was determined by Reactions were performed as described in TabRdolated yield
H NMR after quenching with 5% BN in MeOH: syn at 4.82, anti after chromatography.Determined by HPLC using a Chiralpak OD
atd 5.32 and 5.18syn anti. < Determined by HPLC using a Chiralpak colum_n.d A 5-fold molar excess of aldehyde was useReaction in
OD column (hexan@rOH= 85:15).¢ Reactions were performed with ~ reéfluxing CHCl.

a 5-fold molar excess of aldehyde.
y Table 3. Substrate-to-Catalyst Ratios in Hetero-Diefdder

to be the least reactive of dirhodium(ll) carboxamidate catalysts Reéactions of Aldehydes with the Danishefsky Diene

for diazo decompositio#f By comparison, the normally more reaction yield, % ee, %
reactive chiral dirhodium(ll) carboxylates7)( provided low R catalyst S/IC  time,d 1t 1¢
enantiocontrol for this reaction.

A survey of aldehyde substrates considered to be representative ? ‘NO2CeHs  Rhy(4R-dFIBAZ)s ) (5)88 j g; gj
was undertaken, and the results obtained with two catal$bts ( 57000 4 7 63
and6b) are reported in Table 2. As can be seen from data for 10,000 4 71 61
reactions of substituted benzaldehydes, there is a significant Rhy(4S-MPPIM), 1,000 3 79 31
electronic influence on enantiocontrol so that % ee values increase 10,000 10 62 80
with increasing electron withdrawal from a para-substituent. Also, O @\; Rhy(4S-MPPIM), 10,000 10 81 73

2!

the effect of catalyst ligands on enantioselectivity (com3aré
for selectivity) is substantial but not apparently uniform (steric 2 Reactions were performed as described in Table 1 using a five-
or electronic effects)?*2 Still, enantiomeric excess beyond 90% 5,4 molar excess of aldehyde.
can be achieved with several substrates (Tables 1 and 2), but
additional efforts will be required for full optimization.

We are aware of only one example of a hetero-Didikler

The slight decrease in % ee values as the S/C ratio is increased

reaction in which less than 1.0 mol % of catalyst was effectively may bet:jue_ o gdbaclggr%un(ilj_rﬁac(:jt_lon, but thlsl IS ugclear it this
employed, and that one used 0.5 mol % of a copperfl3- time. What is evi ent is that dirhodium(ll) catalysts do not ave

oxazoline complex in nitromethaf&!? Consequently, we were the same restrictions for catalyst turnover that are common with
surprised to find that the substrate-to-catalyst ratio could be Previously reported Lewis acid catalysts. The implications of this

reduced by more than 2 orders of magnitude below commonly for other Lewis acid catalyzed reactions are currently under
used S/C ratios of 1650. Representative data are given in Table investigation.

3 with two catalysts.
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